$11^{2}_{55}$ - Minimal pinning sets
Pinning sets for 11^2_55
Minimal pinning semi-lattice
(y-axis: cardinality)
Pinning semi lattice for 11^2_55
Pinning data
Pinning number of this multiloop: 5
Total number of pinning sets: 64
of which optimal: 1
of which minimal: 1
The mean region-degree (mean-degree) of a pinning set is
on average over all pinning sets: 2.83846
on average over minimal pinning sets: 2.0
on average over optimal pinning sets: 2.0
Refined data for the minimal pinning sets
Pin label
Pin color
Regions
Cardinality
Degree sequence
Mean-degree
A (optimal)
•
{1, 2, 3, 6, 10}
5
[2, 2, 2, 2, 2]
2.00
Data for pinning sets in each cardinal
Cardinality
Optimal pinning sets
Minimal suboptimal pinning sets
Nonminimal pinning sets
Averaged mean-degree
5
1
0
0
2.0
6
0
0
6
2.39
7
0
0
15
2.67
8
0
0
20
2.88
9
0
0
15
3.04
10
0
0
6
3.17
11
0
0
1
3.27
Total
1
0
63
Other information about this multiloop
Properties
Region degree sequence: [2, 2, 2, 2, 2, 3, 4, 4, 4, 5, 6]
Minimal region degree: 2
Is multisimple: No
Combinatorial encoding data
Plantri embedding: [[1,1,2,3],[0,4,5,0],[0,5,5,3],[0,2,6,4],[1,3,7,7],[1,6,2,2],[3,5,8,8],[4,8,8,4],[6,7,7,6]]
PD code (use to draw this multiloop with SnapPy): [[14,18,1,15],[15,13,16,14],[17,7,18,8],[1,7,2,6],[12,5,13,6],[16,9,17,8],[2,9,3,10],[4,11,5,12],[3,11,4,10]]
Permutation representation (action on half-edges):
Vertex permutation $\sigma=$ (10,3,-11,-4)(4,13,-5,-14)(16,5,-17,-6)(6,15,-7,-16)(14,7,-1,-8)(8,1,-9,-2)(2,9,-3,-10)(18,11,-15,-12)(12,17,-13,-18)
Edge permutation $\epsilon=$ (-1,1)(-2,2)(-3,3)(-4,4)(-5,5)(-6,6)(-7,7)(-8,8)(-9,9)(-10,10)(-11,11)(-12,12)(-13,13)(-14,14)(-15,15)(-16,16)(-17,17)(-18,18)
Face permutation $\varphi=(\sigma\epsilon)^{-1}=$ (-1,8)(-2,-10,-4,-14,-8)(-3,10)(-5,16,-7,14)(-6,-16)(-9,2)(-11,18,-13,4)(-12,-18)(-15,6,-17,12)(1,7,15,11,3,9)(5,13,17)
Multiloop annotated with half-edges
11^2_55 annotated with half-edges